即时新闻

  • 基因剪刀真能做到吗

        张田勘

        日前,美国《科学》杂志刊文展望了2020年可能成为头条的十大科学新闻,其中一项吸引了很多人的眼球。文中认为,CRISPR基因剪刀治疗癌症等疾病的临床试验将可能获得突破,同时,运用CRISPR技术进行异种器官移植的人体临床试验有望在2020年启动,解决如肝脏、心脏、角膜等器官的短缺问题。这对人类健康无疑是巨大的福音。那么,这样的研究目前进展到了什么程度?前景到底怎样?

        什么是CRISPR基因剪刀

        所谓CRISPR基因剪刀,简单地说,就是用基因工程的手段,删除、添加、激活或抑制人和其他动植物细胞中的目标基因。对于治疗疾病而言,CRISPR基因剪刀通过修饰人类基因组中30亿个字母序列中的错别字,即致病基因,来治疗多种疾病,尤其是遗传疾病。

        镰状细胞病、杜兴氏肌营养不良症、地中海贫血等都可以采用基因剪刀来治疗。以镰状细胞病为例,研究发现,HBB和BCL11A基因位点都与镰状细胞病有关,并且已被确定为目标基因,如果用基因剪刀切除它们,或者关闭它们,就可以治疗镰状细胞病。

        美国《科学》杂志之所以预测2020年CRISPR基因剪刀可以在治疗癌症和器官移植中发挥巨大作用,是因为2019年的一些研究已经显示了它的潜在效果。

        美国研究用基因剪刀治疗骨髓瘤和肉瘤

        2019年11月,美国宾夕法尼亚大学肿瘤学教授爱德华·A·斯塔德莫尔博士带领的研究团队公布了其用CRISPR基因剪刀治疗3名癌症病人的结果。

        这3名病人都已60多岁,其中2名病人是多发性骨髓瘤,另一名病人患的是肉瘤。他们都接受了传统的手术、放化疗,但不幸的是癌症依然扩散了。于是,斯塔德莫尔团队尝试采用基因剪刀来编辑患者的T细胞,以治疗他们的疾病。

        多发性骨髓瘤是一种恶性浆细胞病,肿瘤细胞起源于骨髓中的浆细胞,浆细胞是B淋巴细胞发育到最终功能阶段的细胞。肉瘤则是来源于间叶组织(包括结缔组织和肌肉)的恶性肿瘤,多发生于皮肤、皮下、骨膜及长骨两端。对于这两种癌症,都可以采用增加病人体内T细胞的方式来让T细胞直接杀灭肿瘤细胞。

        斯塔德莫尔先从患者血液中提取出T细胞,然后使用基因剪刀来移除三个可能干扰T细胞攻击癌症或引起副作用的基因。研究人员先是移除T细胞的天然受体,以确保T细胞与癌细胞在正确部位结合,然后再编辑删除称为自然检查点的PD-1基因,因为它有时会阻止T细胞攻击癌细胞。至此,病人的T细胞被基因剪刀编辑完成。

        在向患者体内回输他们经过基因剪刀编辑的T细胞后,其体内的T细胞会迅速倍增,从1万倍增加到10万倍。血液检测发现,3名患者体内经基因剪刀编辑过的T细胞都有了较大扩增并存活了下来。

        遗憾的是,这3名病人都没有显示出疗效,但是也没有出现与治疗相关的严重不良事件。斯塔德莫尔认为,他们用CRISPR基因剪刀的重点是首先确保该疗法安全可行,之后才是追求疗效。后续如果获得美国食品与药物管理局的批准,就要采用基因剪刀来直接剪除不同的癌症基因,有效地治疗癌症。此后,研究人员还计划再治疗15名患者,并评估基因剪刀的安全性和效果。

        中国研究用基因剪刀治疗肺癌和食道癌

        早在2017年3月至2018年1月,杭州市肿瘤医院院长吴式琇团队就进行了用CRISPR基因剪刀治疗食管癌患者的临床试验。也是将患者血液中T细胞提取出来,再用基因剪刀敲除细胞中抑制免疫功能的PD-1基因,再回输患者体内增殖,希望大量增殖的T细胞杀灭癌细胞。

        吴式琇团队招募了21名晚期食管鳞状细胞癌患者进行临床试验治疗,迄今已经有20人死亡(均死于癌症),其中有13例食道癌病人是在经过手术、放疗、化疗等手段后,没有任何其他治疗选择的情况下,自愿同意接受临床试验。如果不参与试验,这些患者的生存期在3-6个月之间。

        团队收集患者外周血中的T细胞,并通过CRISPR基因编辑技术,在实验室中敲除患者T细胞上抑制免疫功能的PD-1基因后,在体外进行细胞扩增。细胞达到一定量后,再将其输回患者体内,希望它们大量增殖后能对肿瘤进行杀伤。每次输注后4周评估反应。

        结果显示,这13位接受试验的患者中,治疗有效率达到40%,比同种适应症下用PD-1药物治疗的效果高出一倍,病人只出现了轻微发烧和皮疹,没有危及人体的重大副作用。但是,该试验疗法没有对照组,并不能完全说明CRISPR基因剪刀治疗食道癌的效果。

        更早的2016年8月,四川大学华西医院肿瘤学家卢铀教授团队也开启了用CRISPR基因剪刀编辑T细胞,用以治疗化疗、放疗以及其他疗法无效的转移性非小细胞肺癌患者(9人)的临床试验,但后来的效果没有披露。看得出,美国斯塔德莫尔团队与吴式琇团队和卢铀团队采用的CRISPR基因剪刀疗法都相似。

        研究通过基因编辑获取可供人移植的器官

        器官移植是挽救人生命的一种重要技术,但是,限于供体器官的数量,很多病人在排队等待器官之时去世。于是,人们把目光转向了用动物器官来替代的方法,其中极为适合人的动物就是猪。虽然在分类上,猪是偶蹄目,人是灵长目,相差挺远,但从体型、食性、代谢水平来看,猪和人比较接近。从“性能参数”上看,猪的一些器官与人类基本处于同一档次。猪的心脏与人的心脏大小差不多,其管道分布和动力输出也相似;人和猪的体温同为36-37℃;人的心率为60-100次/分钟,猪为55-60次/分钟。

        从这些因素看,猪是人体器官较为适合的替代品。但是,猪身上有许多病毒和抗原,可能引起移植免疫排异反应,并且可能导致人产生多种疾病。为此,需要用CRISPR基因剪刀来剪除或敲掉猪身上的病毒和抗原的基因,让它们失去活性,就难以造成人的排异反应并且不会感染人。

        过去发现,猪身上的猪内源性逆转录病毒有60多个。美国哈佛大学教授乔治·丘奇团队在2016年就通过CRISPR基因剪刀让60多个逆转录病毒基因拷贝失活(敲除),既降低了未来人的受者可能感染这些逆转录病毒的风险,同时又降低了这些病毒作为异种抗原触发受者免疫系统对异体器官发起大规模免疫攻击的概率。体外实验验证逆转录病毒的感染率只为原来的千分之一,基本解决了猪内源性逆转录病毒感染风险。

        不过,仅仅解决逆转录病毒的抗原性和感染性还不够,猪身上还有其他人所没有的物质,可以引发强烈的免疫排异反应,如α-GAL糖分子。当带有这种分子的猪器官植入人体后,人体的免疫系统会对其发起猛攻,几分钟内即可将移植器官摧毁,并致人死亡。因此,需要用CRISPR基因剪刀来敲除α-GAL基因,以消除隐患。

        对此,各个国家的研究人员都在进行研究。2018年底德国研究人员报告说,他们把经过CRISPR基因剪刀编辑的猪心脏移植到狒狒体内,移植后狒狒最长存活时间达6个半月。2019年2月,巴西圣保罗大学生物科学研究所的研究人员也表示,他们确认了猪体内3个能引起人体排异反应的基因,并用CRISPR基因剪刀关闭了这些基因,有可能消除人体免疫系统对猪器官的排异。

        延伸阅读

        基因剪刀治病还要克服许多困难

        无论用CRISPR基因剪刀治疗癌症或其他疾病,还是培养器官供人移植,首先是要符合伦理。其次,要解决CRISPR基因剪刀的脱靶效应,因为也有相当多的研究表明,基因剪刀可能脱靶,把不该编辑的基因当作靶基因敲除,如此,就会事与愿违。

        当然,在研究方向上,还需要进一步过渡到直接作用而非间接作用。例如,无论是中国还是美国研究人员,采用CRISPR基因剪刀只是针对人体内的T细胞,以敲除它们阻碍识别和攻击癌细胞的分子,从而增强T细胞攻击癌细胞的能力。但是,如果能采用CRISPR基因剪刀直接敲除癌细胞的基因,使其灭活,就能达到直接抗癌的作用。

        利用基因剪刀治疗重大疾病,对人类健康是巨大的福音,所有人都期待这一手段会在不久的将来获得重大突破。

  • 福岛成为“野生动物园”

        叶倾城

        据国外媒体报道,美国佐治亚大学最新研究称,2011年3月日本福岛核泄漏事件带来一场灾难,该地区高辐射污染的无人区一片荒芜,没有人类生活的迹象。但是现今近10年过去了,福岛变成了野生动物的天堂,存在着大量种类繁多的野生动物。

        一份基于相机记录的研究报告发表在《生态与环境前沿期刊》上,该研究报告称,日本福岛26.7万多张野生动物照片记录了20余种动物,包括:野猪、日本野兔、猕猴、野鸡、狐狸等。

        之前一些研究报告揭晓了前苏联切尔诺贝利核电站野生动物生存状况,近期科学家也开始关注核泄漏事件发生近10年的日本福岛。

        佐治亚大学野生动物生物学家詹姆斯·比斯利表示,研究结果首次证实,尽管福岛存在着辐射污染,但在疏散区,仍有大量野生动物生存,并且种类达到20多种。相机拍摄到人类疏散区存在与人类发生冲突的物种,尤其是野猪,这表明当人类撤离之后,这些物种数量大幅增加。

        福岛大学环境放射性研究所教授托马斯·辛顿等人在福岛发现具有生物多样性的3个区域,相关摄影数据来自3个区域的106个拍摄点,这3个区域是:高辐射污染的无人区;中等辐射污染的人类活动限制区;较低环境辐射污染的人类可居住区。

        在相机观察的120天里,相机拍摄了4.6万张野猪照片,其中2.6万张是在无人区拍摄的,1.3万张是在人类活动限制区拍摄的,0.7万张是在人类可居住区拍摄的。

        在无人区和人类活动限制区拍摄次数较多的其他物种包括:浣熊、日本貂和日本猕猴。辛顿指出,最新研究报告并不是对动物健康的评估分析,仅是对该区域野生动物种群的观察记录。这项研究具有重要作用,其调查了核辐射对野生动物种群的影响,而此前大多数研究都是观察分析对单个动物的辐射危害。

        研究结果显示,人类活动水平、海拔高度和栖息地类型是影响物种数量的主要因素,而不是辐射等级。大多数物种的活动模式与已知行为模式一致,浣熊是夜行动物,它们在晚上更活跃,而野鸡是白天活动的动物,白天更活跃。然而,在无人区的野猪比人类可居住区的野猪更加活跃,该物征显示它们可能在没有人类活动的情况下改变自己的行为方式。

        但是日本鬣羚是一个例外,它是一种类似山羊的哺乳动物,平时会远离人类,但在福岛有人居住的高地区域频繁发现它们的活动踪迹。研究人员称,这可能是一种动物行为调整,鬣羚会避开疏散区数量较多的野猪。

  • 卫星数据显示 珠峰地区植被增加

        张家伟

        英国埃克塞特大学10日发布一项研究说,珠穆朗玛峰附近区域乃至整个喜马拉雅山区的植被都在增加,这种变化可能与全球气候变暖存在一定关系。

        该校研究人员利用1993年至2018年间收集的美国航天局卫星数据来分析珠峰以及附近区域的植被变化。相关结果已发表在国际学术期刊《全球变化生物学》上。

        团队发现,在海拔4150米至6000米之间的4个不同高度范围内,高山冰缘植物覆盖的面积都出现了一定增长,其中海拔5000米至5500米的高度范围内这种增长趋势最为明显。

        尽管这项研究并没有具体分析这种现象的成因,但据埃克塞特大学介绍,这一发现与此前的研究模型计算结果相近,后者显示由于全球气候变暖,喜马拉雅山区不适合植物生存的极寒区域减少,一些地方开始有植物生长。

  • “分子围栏”让甲烷高效变甲醇

        朱涵 施璇

        浙江大学肖丰收教授和王亮研究员团队构筑起了一系列“分子围栏”多相催化剂体系,能够将甲烷高效转化为甲醇。该研究成果于北京时间10日发表于《科学》杂志。

        甲烷是天然气、页岩气和可燃冰的主要成分,储备量相对丰富、价格低廉,甲醇是生成基础化学品的重要平台分子,具有高附加值和高应用价值。

        甲烷转化成甲醇的催化剂主要是双氧水,但“顽皮”的双氧水一旦生成,会很快被稀释,无法与甲烷充分反应。王亮研究团队想了一个巧妙的办法,用一个“围栏”圈住了双氧水,让双氧水的富集浓度达到正常条件下的一万倍,让催化反应加快进行。此前甲烷的转化率很难突破3%,“分子围栏”技术可以在70℃的温和条件中,将转化率大幅提升至17.3%。除了高效外,这个催化剂在制备中不产生污染,避免了传统转化方式会产生大量废水的弊端。

  • 减少气泡新技术 让钢筋水泥更长寿

        东新

        日本一家企业最近发明了可减少钢筋混凝土中气泡的新技术,据称可将原本使用寿命约100年的钢筋混凝土的使用寿命提高到200年以上。

        传统混凝土在浇筑时会混入空气形成气泡,导致混凝土凝固后表面出现孔洞。在长年的风吹雨打中,雨水和盐分等会从孔洞渗入混凝土内部并腐蚀钢筋,导致混凝土出现裂缝等问题,影响使用寿命。

        据日本《读卖新闻》报道,日本石川岛播磨重工集团发明了一种可减少混凝土中气泡的新技术。该公司使用独立研发的特殊设备在浇筑前震动混凝土,并施加压力排出空气,将由气泡导致的孔洞减少了约70%。实验显示,雨水等对这样浇筑的混凝土的渗透速度大大减缓。这家企业计划在隧道侧壁等基础设施建设中使用这一新技术。